skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bromberg, Yaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Correlations between entangled photons are a key ingredient for testing fundamental aspects of quantum mechanics and an invaluable resource for quantum technologies. However, scattering from a dynamic medium typically scrambles and averages out such correlations. Here we show that multiply scattered entangled photons reflected from a dynamic complex medium remain partially correlated. In experiments and full-wave simulations we observe enhanced correlations, within an angular range determined by the transport mean free path, which prevail over disorder averaging. Theoretical analysis reveals that this enhancement arises from the interference between scattering trajectories, in which the photons leave the sample and are then virtually reinjected back into it. These paths are the quantum counterpart of the paths that lead to the coherent backscattering of classical light. This work points to opportunities for entanglement transport despite dynamic multiple scattering in complex systems. 
    more » « less
  2. null (Ed.)
  3. Characterizing ultrashort optical pulses has always been a critical but difficult task, which has a broad range of applications. We propose and demonstrate a self-referenced method of characterizing ultrafast pulses with a multimode fiber. The linear and nonlinear speckle patterns formed at the distal end of a multimode fiber are used to recover the spectral amplitude and phase of an unknown pulse. We deploy a deep learning algorithm for phase recovery. The diversity of spatial and spectral modes in a multimode fiber removes any ambiguity in the sign of the recovered spectral phase. Our technique allows for single-shot pulse characterization in a simple experimental setup. This work reveals the potential of multimode fibers as a versatile and multi-functional platform for optical sensing. 
    more » « less
  4. Abstract The last decade has seen the development of a wide set of tools, such as wavefront shaping, computational or fundamental methods, that allow us to understand and control light propagation in a complex medium, such as biological tissues or multimode fibers. A vibrant and diverse community is now working in this field, which has revolutionized the prospect of diffraction-limited imaging at depth in tissues. This roadmap highlights several key aspects of this fast developing field, and some of the challenges and opportunities ahead. 
    more » « less